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Abstract

An iterative method based on differential quadrature rules is proposed as a new unified frame of
resolution for non-linear two-degree-of-freedom systems. Dynamical systems with Duffing-type non-
linearity have been considered. Differential quadrature rules have been applied with a careful distribution
of sampling points to reduce the governing equation of motion to two second-order non-linear, non-
autonomous ordinary differential equations and to solve the time-domain problem. The time domain of the
problem is discretized by means of time intervals, with the same distribution of sampling points used to
discretize the space domain (which can be seen as a single interval). It will be shown that accurate solutions
depend not only on the choice of the distribution of sampling points, but also on the length of the time
interval one refers to in the computations. The numerical results, utilized to draw Poincar!e maps, are
successfully compared with those obtained using the Runge–Kutta method.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

The normal way to proceed to study non-linear continuous systems is to operate a
discretization in space and to compute the time-dependent solution numerically.
Discretization essentially transforms vibration problems described by partial differential

equations into problems described by sets of simultaneous ordinary differential equations. The
two main classes of discretization procedures are based on the expansion of the solution in a finite
series of given functions. These classes are referred to as Rayleigh–Ritz-type methods and
weighted residual methods. In the first class one can include the finite element method, although
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the procedural details differ from those of the classical Rayleigh–Ritz method. The second class
includes perhaps the most widely used discretization method, namely, the Galerkin method.
The Ritz–Galerkin techniques need to determine eigenfunctions and this can be difficult. To

overcome this problem, differential quadrature rules with a suitable distribution of sampling
points have been applied to reduce non-linear boundary–initial-value problems to a system of
coupled non-linear ordinary differential equations [1].
The method illustrated in Ref. [1] is based on a new rule to generate sampling points which

allows, using only six points, the discretization errors to be minimized.
A way to improve this method seems to be to discretize the whole space-time domain by means

of differential quadrature rules with the same distribution of sampling points.
This is possible by specifying the two parameters governing the rule mentioned above and by

repeating the procedure on the time axis with a simple co-ordinates translation, by a quantity
equal to the length of the time interval one refers to in discretizing the time domain. In fact,
solutions may be calculated over a rectangular quadrature grid which has N points in the space
direction and ðM � NÞ in the time direction, where N is the number of sampling points (here
limited to six) and M fixes the upper limit of the range over which the numerical solution is
sought, so it may change each time.
The resulting method, referred to here as the iterative differential quadrature (IDQ) method,

has been successfully used to simulate two non-linear oscillators coupled in linear terms, by
showing some aspects of the system behaviour.
More attention has recently been given to the behaviour of non-linear coupled oscillators.

Papers devoted to the analysis of these systems mainly use a semi-analytical approach [2,3].
Numerical investigations can be found in Ref. [4].
The literature has several examples of the applications of differential quadrature rules, although

in different versions, to discretize either the space domain or the time domain.
A good review of the various applications of the method is offered in Ref. [5]. This paper ½5�;

among other things, suggests the use of the Frechet derivative to treat non-linearity. This concept,
together with that of generalized differential quadrature rules [6–9], inspired a recent study, which
considered a single Duffing oscillator [10].

2. The differential quadrature method: a brief overview

The basic idea of the differential quadrature method is that the derivative of a function with
respect to a space variable at a given point can be approximated as a weighted linear sum of the
function values at all discrete points in the domain of that variable. In terms of dimensionless
variables, it is assumed that, at a point z ¼ zi; the rth order derivative of a function wðzÞ; defined in
the domain ð0; 1Þ with N discrete grid points, is given by

drw

dzr

� �
z¼zi

¼
XN

j¼1

A
ðrÞ
ij wj; i ¼ 1; 2;y;N; ð1Þ

where A
ðrÞ
ij are the weighting coefficients of the rth order derivative.

ARTICLE IN PRESS

S. Tomasiello / Journal of Sound and Vibration 265 (2003) 507–525508



The weighting coefficients are determined by substituting approximating functions to the
originary function wðzÞ in Eq. (1). In the generalized differential quadrature (GDQ) method [8]
these test functions are assumed to be the Lagrange interpolated polynomial. The off-diagonal
terms of the weighting coefficient matrix of the first order derivative become:

A
ð1Þ
ij ¼

QN
n¼1
nai

ðzi � znÞ

ðzi � zjÞ
QN

n¼1
naj

ðzj � znÞ
; i; j ¼ 1; 2;y;N; jai: ð2Þ

The off-diagonal terms of the weighting coefficient matrix of the higher order derivative are
obtained through the recurrence relationship:

A
ðrÞ
ij ¼ r A

ðr�1Þ
ii A

ð1Þ
ij �

A
ðr�1Þ
ij

ðzi � zjÞ

" #
; i; j ¼ 1; 2;y;N; jai; ð3Þ

where 2prpðN � 1Þ:
The diagonal terms of the weighting coefficient matrix are given by

A
ðrÞ
ii ¼ �

XN

n¼1
nai

A
ðrÞ
in ; i ¼ 1; 2;y;N; ð4Þ

where 1prpðN � 1Þ:
Assuming the Lagrange interpolated polynomial as test functions, there is no restriction in the

choice of the grid co-ordinates. So, in order to have more accurate solutions, it is possible to
generate the sampling points as follows:

zi ¼
1

2
1� cos

ði � 1Þ
ðN � 1Þ

p
� �

; i ¼ 1; 2;y;N: ð5Þ

In order to overcome the problem of the d-points [5], Shu and Du [11] support the GDQ method
with a direct substitution of the boundary conditions into the governing equation.

3. The iterative differential quadrature method

The IDQ method moves away from the Shu and Du concept, but uses grid co-ordinates which
are different from those given by Eq. (5). In fact, the IDQ method is based on a particular rule
generating a distribution of sampling points which give sufficiently accurate results [1].
This rule is given below as

zi ¼
i � 1

N � 1

� �Nbi=i
ffi
i

p
; ð6Þ

where bi are unknown coefficients to be fixed.
Because of the symmetry of the sampling points distribution, with N ¼ 6; only b2 and b3 need to

be fixed.
It has already been shown that the results in the space domain are influenced by b3 and not by

b2 in the linear range or not significantly in the non-linear range by the same coefficient [1]. It has
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also been shown that the results are in good agreement for values of b3 (close to 1.2). Instead, the
coefficient b2 influences the solution in the time domain, as will be seen in the following sections.
The concept of IDQ method is to use the same sampling points distribution to discretize the whole
space–time domain.
On the spatial axis the interval 0pzip1 is considered by scaling the dimensional spatial co-

ordinate with the length of the problem domain. The time axis can similarly be regarded as an
unitary dimensionless intervals series, where each interval is the result of a time-scaling operation
from an interval Dt of suitable length. In particular, for free dynamical systems the natural period
can be considered, whereas for forced dynamical systems one can consider the forcing term
period. In order to have more accurate results, a solution is calculated for a fraction of the period
referred to. In particular, by assuming 4 as denominator of the above-mentioned fraction and by
setting b2 ¼ 1:4; as well as setting b3 ¼ 1:2; one obtains sufficiently accurate results, as it will be
shown later. The solution is calculated for each of the M time intervals with the following change
in the time variable t:

%t½i� ¼
t�

Pi�1
k¼1 Dtk

Dti

; i ¼ 1; 2;y;M ð7Þ

and with the initial conditions:

w
½i�
l1 ¼ w

½i�1�
lN ; ’w

½i�
l1 ¼ ’w

½i�1�
lN ; i ¼ 1; 2;y;M; l ¼ 1; 2;

where i is referred to the ith time interval, l indicates the oscillator referred to, w is the
displacement, and ’w is the velocity. In order to indicate the values referred to the ith time interval,
squared bracket symbolism has been adopted. The choice of the number of intervals M depends
on the kind of solution required but in any case, the sampling points distribution for each time
interval is equal to the distribution applied to the spatial interval.
In this paper, solutions obtained with the IDQ method are used to draw Poincar!e maps, so the

number M changes according to circumstances.
The distribution resulting from the cited values of b2 and b3 is

f0; 0:008; 0:281; 0:719; 0:992; 1g: ð8Þ

4. The model

Consider a simply supported beam with span L; Young’s modulus E;moment of inertia I ;mass
per unit lenght m; and cross-sectional area A; which rests on an hardening non-linear elastic
foundation and which is subjected to a compressive load P and to an exciting transverse force
Fðz; tÞ ¼ FðzÞ cos %ot: The foundation is supposed to be defined by the following load–
displacement relationship: qðzÞ ¼ k1vðzÞ þ k3vðzÞ

3; where qðzÞ is the force per unit length, k1 is
the linear Winkler foundation stiffness and k3 > 0 is the hardening non-linear elastic foundation
stiffness.
If the beam is considered to be slender, the equation of motion can be written as

m
@2v

@t2
þ EI

@4v

@z4
þ P

@2v

@z2
þ k1v þ k3v

3 ¼ F ðzÞcos %ot: ð9Þ
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Eq. (8) can be conveniently written in terms of dimensionless variables as

@2w

@t2
þ

@4w

@z4
þ s

@2w

@z2
þ y1w þ y3w3 ¼ f ðzÞcosot; ð10Þ

where

w ¼
v

L
; z ¼

z

L
; t ¼

ffiffiffiffiffiffi
EI

m

r
t

L2
; o ¼

ffiffiffiffiffiffi
m

EI

r
L2

%o;

s ¼
PL2

EI
; y1 ¼

k1L
4

EI
; y3 ¼

k3L
6

EI
; f ðzÞ ¼

FðzÞL3

EI
:

The differential quadrature analogue of Eq. (9) for the ith time interval may be written, using the
quadrature rules in the z and t co-ordinates and Eq. (7), as

a2i
XN

j¼1

A
ð2Þ
kj wlj þ

X2
j¼1

Rljwjk þ y3w3
lk ¼ flk coso %tDti þ

Xi�1

k¼1

Dtk

 !
;

l ¼ 1; 2; k ¼ 1;y;N; ð11Þ

where N is the number of the sampling points, i.e., six, and

ai ¼
1

Dti

; flk ¼ f ðzl ; %tkÞ;

Rlj ¼ Lðlþ2Þðjþ2Þ �
Ejþ2

D
Lðlþ2Þ2 �

Hjþ2

G
Lðlþ2ÞðN�1Þ þ y1dlj;

with dlj being equal to the Kronecker operator and

Llj ¼ A
ð4Þ
lj þ sA

ð2Þ
lj ;

D ¼ A
ðpÞ
N2 �

A
ðpÞ
NðN�1Þ

A
ðqÞ
1ðN�1Þ

A
ðqÞ
12 ; Ej ¼ A

ðpÞ
Nj �

A
ðpÞ
NðN�1Þ

A
ðqÞ
1ðN�1Þ

A
ðqÞ
1j ;

G ¼ A
ðpÞ
NðN�1Þ �

A
ðpÞ
N2

A
ðqÞ
12

A
ðqÞ
1ðN�1Þ; Hj ¼ A

ðpÞ
Nj �

A
ðpÞ
N2

A
ðqÞ
12

A
ðqÞ
1j :

In the equations above, the quantities p and q depend on external constraints: for a simply
supported beam p ¼ q ¼ 2:
In Eq. (11), the apex ½i� has been omitted for simplicity. For more details about the deduction of

Rlj and the other related quantities, refer to Ref. [1].
The first interval has the following initial conditions:

w
½1�
l1 ¼ a; a1 ’w

½1�
l1 ¼ b; l ¼ 1; 2; ð12Þ

where a and b are real numbers.

ARTICLE IN PRESS

S. Tomasiello / Journal of Sound and Vibration 265 (2003) 507–525 511



The second part of Eq. (12) can be written as

a1
XN

j¼1

A
ð1Þ
1j w

½1�
lj ¼ b; l ¼ 1; 2:

This equation can be used in order to obtain w
½1�
lN :

w
½1�
lN ¼

Cl

A
ð1Þ
1N

; l ¼ 1; 2;

where

Cl ¼
b

a1
� ðAð1Þ

11 a þ?þ A
ð1Þ
1ðN�1Þw

½1�
lðN�1ÞÞ:

Finally, w
½1�
l1 and w

½1�
lN can be substituted into Eq. (11), giving

a21 A
ð2Þ
k1a þ

A
ð2Þ
kNCl

A
ð1Þ
1N

þ
XN�1

j¼2

A
ð2Þ
kj wlj

 !
þ
X2
j¼1

Rljwjk þ y3w3
lk ¼ flk coso %tDti þ

Xi�1

k¼1

Dtk

 !
;

l ¼ 1; 2; k ¼ 2;y;N � 1: ð13Þ

Eq. (13) is also valid for the ith time interval with

a ¼ w
½i�1�
lN ; b ¼ ’w

½i�1�
lN ; l ¼ 1; 2

and replacing a1 with ai:
As can be seen, for each time interval a set of 2� ðN � 2Þ non-linear equations coupled in the

linear part is obtained. These equations will be solved with Newton’s method.

5. Some numerical results

The solutions obtained by using the IDQ method are compared with the results obtained by
applying the Runge–Kutta method to the equation resulting from the only spatial discretization:

.wi þ
X2
j¼1

Rijwj þ y3w3
i ¼ fi cosot; i ¼ 1; 2: ð14Þ

For an initial check of the method, solutions have been calculated by assuming s ¼ 0:1; y1 ¼
y3 ¼ 1 and f as constant, i.e., fi ¼ f : The cases f ¼ 0; 1; 10; 100 have been considered, by
varying initial conditions. In addition, fundamental resonance with oEo10 has been considered.
The cases considered can be classified into three categories. The first one includes cases with a

and b which are not equal to zero. Cases belonging to the second category are characterized by
having either a or b equal to zero. Finally, the third category includes cases where a and b have the
same value.
Computations for each time interval have been carried out by assuming Dt ¼ T=4; where T is

the period of the forcing term or the natural period of the first oscillator for the forced or free
problem respectively. Tables 1–16 show results obtained for nT with n ¼ 1;y; 10:
For brevity, only results obtained for f ¼ 0 and 100 have been tabulated.
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Table 1

Numerical results for a ¼ 0:5; b ¼ 1; f ¼ 0

n wRK wIDQ D% ’wRK ’wIDQ D%

1 0.500625 0.50058 0.008989 0.969191 0.96993 �0.076249

2 0.501231 0.501142 0.017756 0.938345 0.939826 �0.157831

3 0.501818 0.501686 0.026304 0.907459 0.909689 �0.245741

4 0.502385 0.502212 0.034436 0.876535 0.879518 �0.340317

5 0.502933 0.502721 0.042153 0.845579 0.849317 �0.442064

6 0.503462 0.503212 0.049656 0.814582 0.819085 �0.552799

7 0.503972 0.503685 0.056948 0.78355 0.788825 �0.673218

8 0.504462 0.50414 0.06383 0.752478 0.758536 �0.805073

9 0.504933 0.504577 0.070504 0.721371 0.72822 �0.949442

10 0.505385 0.504996 0.076971 0.69024 0.697878 �1.106572

Table 2

Numerical results for a ¼ 0:5; b ¼ 1; f ¼ 100

n wRK wIDQ D% ’wRK ’wIDQ D%

1 0.679567 0.680901 �0.196301 32.4329 32.423753 0.028203

2 2.85349 2.87644 �0.804278 57.7146 57.805109 �0.156822

3 7.28859 7.2743 0.196060 30.362 30.602708 �0.792794

4 5.96274 5.98143 �0.313447 �50.5426 �50.880454 �0.668454

5 1.75636 1.76409 �0.440115 �51.4845 �51.451806 0.063503

6 0.532588 0.534046 �0.273758 �22.124 �22.053394 0.319138

7 0.497986 0.499729 �0.350010 9.43368 9.496773 �0.668806

8 0.950073 0.958351 �0.871301 40.5317 40.581247 �0.122243

9 4.00945 4.05298 �1.085685 59.1285 59.283336 �0.261864

10 7.79885 7.757255 0.533348 6.54837 6.347417 3.068748

Table 3

Numerical results for a ¼ 1; b ¼ 0:5; f ¼ 0

n wRK wIDQ D% ’wRK ’wIDQ D%

1 1.00093 1.00088 0.004995 0.261435 0.261565 �0.049726

2 1.0013 1.00121 0.008988 0.02268 0.022982 �1.331570

3 1.00109 1.000987 0.010289 �0.216121 �0.215613 0.235054

4 1.00032 1.00021 0.010996 �0.454873 �0.454087 0.172795

5 0.99897 0.998887 0.008309 �0.693369 �0.692306 0.153309

6 0.997053 0.99701 0.004313 �0.93144 �0.930135 0.140106

7 0.994569 0.994584 �0.001508 �1.169 �1.16744 0.133447

8 0.991518 0.991608 �0.009077 �1.40591 �1.40409 0.129454

9 0.9879 0.988084 �0.018625 �1.64205 �1.63994 0.128498

10 0.983718 0.984012 �0.029887 �1.87728 �1.87487 0.128377
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Table 4

Numerical results for a ¼ 1; b ¼ 0:5; f ¼ 100

n wRK wIDQ D% ’wRK ’wIDQ D%

1 1.17796 1.17913 �0.099324 31.4459 31.4478 �0.006042

2 3.21269 3.23266 �0.621597 54.5955 54.732 �0.250021

3 7.19082 7.17131 0.271318 27.4255 27.7001 �1.001258

4 6.0017 6.02071 �0.316744 �46.6309 �46.9037 �0.585020

5 2.18251 2.19509 �0.576401 �49.1293 �49.1876 �0.118666

6 1.03381 1.03567 �0.179917 �21.2805 �21.2843 �0.017857

7 0.999493 1.00114 �0.164784 10.0516 10.0435 0.080584

8 1.48554 1.49073 �0.349368 40.1622 40.1681 �0.014690

9 4.42628 4.45372 �0.619934 55.0921 55.3048 �0.386081

10 7.64701 7.60511 0.547927 2.50002 2.56432 �2.571979

Table 5

Numerical results for a ¼ 1; b ¼ 0; f ¼ 0

n wRK wIDQ D% ’wRK ’wIDQ D%

1 0.99974 0.999726 0.001400 �0.237832 �0.237717 0.048353

2 0.998916 0.998903 0.001301 �0.475584 �0.475301 0.059506

3 0.997525 0.997533 �0.000802 �0.713099 �0.712619 0.067312

4 0.995568 0.995615 �0.004721 �0.950262 �0.949538 0.076190

5 0.993045 0.993151 �0.010674 �1.18685 �1.18592 0.078359

6 0.98996 0.99014 �0.018183 �1.42276 �1.42165 0.078017

7 0.986314 0.986585 �0.027476 �1.65789 �1.65657 0.079619

8 0.982108 0.982486 �0.038489 �1.8921 �1.89056 0.081391

9 0.977343 0.977845 �0.051364 �2.12526 �2.1235 0.082813

10 0.972024 0.972664 �0.065842 �2.35718 �2.35523 0.082726

Table 6

Numerical results for a ¼ 1; b ¼ 0; f ¼ 100

n wRK wIDQ D% ’wRK ’wIDQ D%

1 1.16728 1.16837 �0.093379 30.9745 30.9759 �0.004520

2 3.15584 3.17531 �0.616951 54.4315 54.564 �0.243425

3 7.14788 7.13024 0.246786 28.5709 28.8522 �0.984568

4 6.06793 6.08565 �0.292027 �45.9758 �46.2501 �0.596618

5 2.22287 2.23574 �0.578981 �49.4653 �49.5277 �0.126149

6 1.03754 1.03925 �0.164813 �21.7685 �21.773 �0.020672

7 0.999406 1.00087 �0.146487 9.55419 9.54564 0.089490

8 1.464 1.4688 �0.327869 39.7255 39.7302 �0.011831

9 4.35816 4.38526 �0.621822 55.2104 55.4203 �0.380182

10 7.64194 7.60031 0.544757 3.88654 3.96912 �2.124769
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Table 7

Numerical results for a ¼ 0; b ¼ 1; f ¼ 0

n wRK wIDQ D% ’wRK ’wIDQ D%

1 0.0000236 0.0000045 80.932203 1.000024334 0.999999999 0.002433

2 0.0000471 0.0000091 80.679406 1.000048565 0.999999997 0.004857

3 0.0000707 0.0000137 80.622348 1.000074082 0.999999992 0.007408

4 0.0000942 0.0000182 80.679406 1.000099548 0.999999986 0.009955

5 0.0001177 0.0000228 80.628717 1.000124962 0.999999979 0.012497

6 0.0001413 0.0000273 80.679406 1.000150322 0.999999969 0.015033

7 0.0001648 0.0000319 80.643204 1.000175628 0.999999945 0.017565

8 0.0001883 0.0000365 80.616038 1.00020088 0.999999945 0.020089

9 0.0002119 0.000041 80.651251 1.000226078 0.999999931 0.022610

10 0.0002354 0.0000456 80.628717 1.000251222 0.999999914 0.025124

Table 8

Numerical results for a ¼ 0; b ¼ 1; f ¼ 100

n wRK wIDQ D% ’wRK ’wIDQ D%

1 0.186743 0.187593 �0.455171 32.837344 32.816316 0.064037

2 2.470142 2.49221 �0.893390 60.280012 60.314796 �0.057704

3 7.346964 7.337066 0.134722 33.749065 34.023062 �0.811865

4 5.950286 5.97165 �0.359042 �53.849007 �54.204098 �0.659420

5 1.361149 1.367013 �0.430812 �53.611221 �53.518517 0.172919

6 0.039388 0.041041 �4.196710 �22.84151 �22.753269 0.386319

7 �0.00195 0.000351 118.000000 8.856387 8.931303 �0.845898

8 0.440679 0.448951 �1.877103 40.738099 40.779598 �0.101868

9 3.619322 3.665857 �1.285738 62.481324 62.59005 �0.174014

10 7.926877 7.885604 0.520672 10.032676 9.8182 2.137775

Table 9

Numerical results for a ¼ 2; b ¼ 0; f ¼ 0

n wRK wIDQ D% ’wRK ’wIDQ D%

1 1.991038 1.991173 �0.006780 �1.923257 �1.934688 �0.594356

2 1.964129 1.964746 �0.031413 �3.82817 �3.850904 �0.593861

3 1.919538 1.920889 �0.070382 �5.6962 �5.730289 �0.598452

4 1.857682 1.859897 �0.119235 �7.509574 �7.554749 �0.601565

5 1.779157 1.782209 �0.171542 �9.251316 �9.306661 �0.598239

6 1.684711 1.688426 �0.220513 �10.905176 �10.969159 �0.586721

7 1.575233 1.579324 �0.259708 �12.456823 �12.526452 �0.558963

8 1.45174 1.455859 �0.283728 �13.89219 �13.96418 �0.518205

9 1.315378 1.319162 �0.287674 �15.199977 �15.269711 �0.458777

10 1.167396 1.17052 �0.267604 �16.368769 �16.432365 �0.388520
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Table 10

Numerical results for a ¼ 2; b ¼ 0; f ¼ 100

n wRK wIDQ D% ’wRK ’wIDQ D%

1 2.222116 2.221304 0.036542 28.998172 29.014682 �0.056935

2 4.019657 4.022992 �0.082967 46.744973 46.964882 �0.470444

3 6.988068 6.953169 0.499408 19.330904 19.858246 �2.727974

4 5.942563 5.972073 �0.496587 �38.754304 �38.760169 �0.015134

5 2.998189 3.025898 �0.924191 �42.304564 �42.618572 �0.742256

6 2.044295 2.047638 �0.163528 �17.663857 �18.027672 �2.059658

7 2.015769 2.01525 0.025747 12.268842 11.892034 3.071260

8 2.671888 2.653541 0.686668 38.778075 38.569615 0.537572

9 5.338567 5.295059 0.814975 43.643802 44.249267 �1.387287

10 7.211664 7.188159 0.325930 �7.580665 �6.353716 16.185242

Table 11

Numerical results for a ¼ 0; b ¼ 2; f ¼ 0

n wRK wIDQ D% ’wRK ’wIDQ D%

1 0.000192 0.0001557 18.906250 2.00005 1.9999994 0.002530

2 0.000385 0.0003114 19.116883 2.00009 1.9999977 0.004615

3 0.000578 0.0004671 19.186851 2.00014 1.9999948 0.007259

4 0.00077 0.0006228 19.116883 2.00019 1.9999908 0.009959

5 0.000963 0.0007785 19.158879 2.00023 1.9999856 0.012219

6 0.001155 0.0009342 19.116883 2.00027 1.9999793 0.014533

7 0.001348 0.00109 19.139466 2.00031 1.9997179 0.029600

8 0.001541 0.001246 19.143413 2.00035 1.9999631 0.019342

9 0.001733 0.001401 19.157530 2.00038 1.999953 0.021346

10 0.001926 0.001557 19.158879 2.00042 1.999942 0.023895

Table 12

Numerical results for a ¼ 0; b ¼ 2; f ¼ 100

n wRK wIDQ D% ’wRK ’wIDQ D%

1 0.211153 0.212175 �0.484009 33.8509 33.8287 0.065582

2 2.60448 2.62793 �0.900372 60.7507 60.7944 �0.071933

3 7.45309 7.43793 0.203406 31.0367 31.2979 �0.841584

4 5.78497 5.80812 �0.400175 �55.1844 �55.5258 �0.618653

5 1.27095 1.27601 �0.398127 �52.7786 �52.6812 0.184544

6 0.032068 0.0336 �4.777348 �21.8292 �21.7408 0.404962

7 �0.001587 0.000547 134.467549 9.85887 9.93456 �0.767735

8 0.485147 0.493887 �1.801516 41.7283 41.7695 �0.098734

9 3.77979 3.82785 �1.271499 62.4707 62.5866 �0.185527

10 7.95495 7.9109 0.553743 6.72716 6.45692 4.017148
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Table 13

Numerical results for a ¼ 1; b ¼ 1; f ¼ 0

n wRK wIDQ D% ’wRK ’wIDQ D%

1 1.00214 1.00205 0.008981 0.759509 0.759686 �0.023305

2 1.00371 1.00354 0.016937 0.51855 0.518939 �0.075017

3 1.00469 1.00447 0.021897 0.277231 0.277895 �0.239511

4 1.00509 1.00483 0.025868 0.03571 0.036693 �2.752730

5 1.00491 1.00464 0.026868 �0.205865 �0.20453 0.648483

6 1.00415 1.003881 0.026789 �0.447306 �0.445636 0.373346

7 1.00281 1.00256 0.024930 �0.688501 �0.686488 0.292374

8 1.00089 1.00068 0.020981 �0.929314 �0.926948 0.254596

9 0.998382 0.998243 0.013923 �1.16964 �1.16688 0.235970

10 0.995304 0.995244 0.006028 �1.40929 �1.40614 0.223517

Table 14

Numerical results for a ¼ 1; b ¼ 1; f ¼ 100

n wRK wIDQ D% ’wRK ’wIDQ D%

1 1.18911 1.19038 �0.106803 31.9161 31.9185 �0.007520

2 3.2703 3.29077 �0.625936 54.7462 54.8883 �0.259561

3 7.23199 7.21074 0.293833 26.2575 26.5268 �1.025612

4 5.93497 5.9551 �0.339176 �47.257 �47.5317 �0.581290

5 2.14339 2.15529 �0.555195 �48.7839 �48.8414 �0.117867

6 1.03081 1.03234 �0.148427 �20.791 �20.7951 �0.019720

7 1.00012 1.00146 �0.133984 10.5493 10.5411 0.077730

8 1.50829 1.51336 �0.336142 40.5958 40.6034 �0.018721

9 4.49512 4.52249 �0.608883 54.949 55.1705 �0.403101

10 7.64978 7.60784 0.548251 1.10743 1.15721 �4.495092

Table 15

Numerical results for a ¼ 2; b ¼ 2; f ¼ 0

n wRK wIDQ D% ’wRK ’wIDQ D%

1 2.009742 2.009384 0.017813 0.048664 0.037851 22.219711

2 2.001015 2.000696 0.015942 �1.903421 �1.924665 �1.116096

3 1.973902 1.973991 �0.004509 �3.836878 �3.868446 �0.822752

4 1.928669 1.929444 �0.040183 �5.732591 �5.774507 �0.731188

5 1.865754 1.867361 �0.086131 �7.57228 �7.62414 �0.684866

6 1.785773 1.788198 �0.135796 �9.338095 �9.399136 �0.653677

7 1.689498 1.69258 �0.182421 �11.013757 �11.082085 �0.620388

8 1.577858 1.581315 �0.219094 �12.583729 �12.656714 �0.579995

9 1.45191 1.455399 �0.240304 �14.034513 �14.108257 �0.525448

10 1.312849 1.316009 �0.240698 �15.353275 �15.423771 �0.459159
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The percentage difference of the IDQ solution with regard to the Runge–Kutta results is
obtained as

D ¼
wRK � wIDQ

wRK

� 100;

where RK stands for Runge–Kutta.
The tables show a noticeable difference with the Runge–Kutta results for cases with the initial

displacement equal to zero. This difference is limited to the displacements and decreases with
increasing n and disappears more quickly by increasing the initial velocity and the amplitude of
the forcing term. In any case, differences between the results shown in the tables do not diverge.
Sign inversions may affect solutions closest to zero, as in Tables 8 and 12.
The long-term solution will be discussed in the next section.
All the computations have been made by means of a Mathematica package created by the

author.
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Table 16

Numerical results for a ¼ 2; b ¼ 2; f ¼ 100

n wRK wIDQ D% ’wRK ’wIDQ D%

1 2.272414 2.27165 0.033621 30.71655 30.738601 �0.071789

2 4.218993 4.222418 �0.081181 46.861133 47.10417 �0.518632

3 7.090236 7.052999 0.525187 15.250495 15.770967 �3.412820

4 5.729613 5.764015 �0.600424 �40.792579 �40.838435 �0.112413

5 2.871101 2.896194 �0.873985 �41.12235 �41.441702 �0.776590

6 2.031366 2.034074 �0.133309 �15.741702 �16.108022 �2.327067

7 2.023462 2.022358 0.054560 14.220838 13.847342 2.626399

8 2.779282 2.759136 0.724863 40.127061 39.946119 0.450923

9 5.55926 5.513668 0.820109 42.167826 42.856437 �1.633025

10 7.153621 7.140019 0.190141 �11.941588 �10.777357 9.749382

Fig. 1. Poincar!e map for f ¼ 0:01 (40 points): }; Runge–Kutta results; %; IDQ results.

S. Tomasiello / Journal of Sound and Vibration 265 (2003) 507–525518



6. Simulations

Two examples have been considered. Attention is drawn to the first oscillator. As already stated
in the previous section, Dt ¼ T=4 has been assumed, where T has the meaning explained above.
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Fig. 2. Poincar!e map for f ¼ 0:023 (214 points): }; Runge–Kutta results; %; IDQ results.

Fig. 3. Poincar!e map for f ¼ 0:025 (120 points): }; Runge–Kutta results; %; IDQ results.

Fig. 4. Poincar!e map for f ¼ 0:2 (40 points): }; Runge–Kutta results; %; IDQ results.
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6.1. First example

Firstly, the case with the first natural frequency closest to zero (or equal to zero with regard to
the Galerkin solution) has been considered. So, s ¼ p2 and y1 ¼ 0 has been chosen. In addition,
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Fig. 5. Poincar!e map for f ¼ 0:6 (20 points): }; Runge–Kutta results; %; IDQ results.

Fig. 6. Poincar!e map for f ¼ 1 (40 points): }; Runge–Kutta results, %; IDQ results.

Fig. 7. Poincar!e map for f ¼ 2:5 (80 points): }; Runge–Kutta results; %; IDQ results.
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y3 ¼ 1 and o ¼ p have been fixed. The behaviour of the resulting system has been studied by
drawing Poincar!e maps with a large number of points. A Poincar!e map, a stroboscopic motion of
the trajectory on a section plane in the phase space, is a common way of displaying the dynamics
of almost-periodic motion, as in the case considered.
In order to visualize a comparison between points obtained with the IDQ method and those

obtained with the Runge–Kutta method, the number of points has been limited were as far as
possible without losing the shape of curves on the Poincar!e section. Figure captions indicate the
number of points which has been used to draw the map.
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Fig. 8. Poincar!e map for f ¼ 2:55 (500 points): (a) Runge–Kutta method, (b) IDQ method.
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On the Poincar!e section, a two-frequency almost-periodic motion is represented by a closed
loop. This can be seen in Fig. 1 for the amplitude of the forcing term f ¼ 0:01:
The transition from a motion on a torus to a motion on a two-torus is pointed out in Fig. 2 for

f ¼ 0:023; even if the limited number of points does not display correctly the continuity of loops.
With a small increase of the amplitude of the forcing term, i.e., for f ¼ 0:023285; a breakdown in
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Fig. 9. Poincar!e map for f ¼ 1 (20 points): }; Runge–Kutta results; %; IDQ results.

Fig. 10. Poincar!e map for f ¼ 1:5 (40 points): }; Runge–Kutta results; %; IDQ results.

Fig. 11. Poincar!e map for f ¼ 2 (40 points): }; Runge–Kutta results; %; IDQ results.

S. Tomasiello / Journal of Sound and Vibration 265 (2003) 507–525522



the continuity of loops occurs. This could be due to an exterior crisis, which is the sudden
destruction of a chaotic attractor, caused by the collision of the chaotic attractor with an unstable
orbit or with its invariant manifolds at its boundary of basin of attraction.
So, on the Poincar!e section, one can see three closed loops, whose dimension decreases by

increasing the amplitude of the forcing term until f ¼ 0:6 (Figs. 3–5). In particular, for f ¼ 0:63
one can see three points on the map corresponding to a 3T-periodic motion, where T is the period
of the forcing term. For values of f greater than 0.6, the dimension of the closed loops increases
until f ¼ 2:5 (Figs. 6 and 7). At f ¼ 2:55; chaos appears suddenly (Fig. 8).
All the figures show a good agreement between IDQ results and Runge–Kutta results. Even if

there may be some differences between points, the Poincar!e maps are preserved, as confirmed in
Fig. 8, where an indirect comparison between points has been forced by a greater number of
points.

6.2. Second example

First, natural frequency closest to the unit (or equal to the unit with regard to the Galerkin
solution) has been assumed. So, s ¼ p2 and y1 ¼ 1 has been chosen. Besides, y3 ¼ 1 and o ¼ p:
Fig. 9 shows an almost-periodic motion on a torus for f ¼ 1: By increasing the amplitude of the

forcing term, on the Poincar!e section, two closed loops appear (Fig. 10), whose dimension
decreases until f ¼ 2 (Fig. 11). For values of f greater than 2 the dimension of the closed loops
increases (Fig. 12).
For f ¼ 2:99 (Fig. 13), a behaviour is observed which seems to denounce a crisis-induced

intermittency, which occurs when the chaotic attractor collides with a periodic orbit in the interior
of its basin.
All the figures again show good agreement between IDQ results and Runge–Kutta results.

7. Conclusions

In this paper, an iterative method based on differential quadrature rules has been proposed.
Computer experiments on dynamical systems allowed one to choose appropriate values of the
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Fig. 12. Poincar!e map for f ¼ 2:5 (80 points): }; Runge–Kutta results; %; IDQ results.
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parameters which influence the solution in the space–time domain. These parameters are the
distribution of the sampling points and the length of the time interval.
A rule for generating sampling points, already used to discretize the space domain, has been

successfully used to discretize the whole space–time domain. In fact, the distribution of sampling
points obtained by this rule is repeated in each of the intervals which compose the discretized time
domain. In this way, it is possible to use only one distribution to solve dynamical problems.
By applying quadrature rules, the non-linear partial differential equation reduces to a set of

non-linear algebraic equations, which can be solved with Newton’s method.
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Fig. 13. Poincar!e map for f ¼ 2:99 (600 points): (a) Runge–Kutta method, (b) IDQ method.
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As an example, a simple structural model has been investigated by using the IDQ method and
Runge–Kutta method, in particular, to draw Poincar!e maps. Numerical results show that the
proposed method behaves quite satisfactorily.
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